w3resource

Pandas: Drop the rows where all elements are missing

Pandas Handling Missing Values: Exercise-7 with Solution

Write a Pandas program to drop the rows where all elements are missing in a given DataFrame.

Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3   70004.0     110.50  2012-08-17       3003.0
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11  70013.0    3045.60  2012-04-25       3001.0

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[np.nan,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[np.nan,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': [np.nan,'2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[np.nan,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001]})

print("Original Orders DataFrame:")
print(df)
print("\nDrop the rows where all elements are missing:")
result = df.dropna(how='all')
print(result)

Sample Output:

Original Orders DataFrame:
     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3   70004.0     110.50  2012-08-17       3003.0
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11  70013.0    3045.60  2012-04-25       3001.0

Drop the rows where all elements are missing:
     ord_no  purch_amt    ord_date  customer_id
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3   70004.0     110.50  2012-08-17       3003.0
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11  70013.0    3045.60  2012-04-25       3001.0

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to drop the columns where at least one element is missing in a given dataframe.
Next: Write a Pandas program to keep the rows with at least 2 NaN values in a given DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-7.php