Pandas: Replace the missing values with the most frequent values present in each column
19. Replace Missing Values with Most Frequent Value
Write a Pandas program to replace the missing values with the most frequent values present in each column of a given dataframe.
Test Data:
     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
  
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,np.nan,65.26,110.5,948.5,np.nan,5760,1983.43,np.nan,250.45, 75.29,3045.6],
'sale_amt':[10.5,20.65,np.nan,11.5,98.5,np.nan,57,19.43,np.nan,25.45, 75.29,35.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df) 
print("\nReplace the missing values with the most frequent values present in each column:")
result = df.fillna(df.mode().iloc[0])
print(result)
Sample Output:
Original Orders DataFrame:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1       NaN        NaN     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003         NaN
4       NaN     948.50     ...             3002      5002.0
5   70005.0        NaN     ...             3001      5001.0
6       NaN    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004         NaN
8   70003.0        NaN     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10      NaN      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001         NaN
[12 rows x 6 columns]
Replace the missing values with the most frequent values present in each column:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1   70001.0      65.26     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003      5001.0
4   70001.0     948.50     ...             3002      5002.0
5   70005.0      65.26     ...             3001      5001.0
6   70001.0    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004      5001.0
8   70003.0      65.26     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10  70001.0      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001      5001.0
[12 rows x 6 columns]
For more Practice: Solve these Related Problems:
- Write a Pandas program to impute missing values in each column with its mode value.
 - Write a Pandas program to replace NaNs with the most frequently occurring value in each specified column.
 - Write a Pandas program to compute the mode of a column and then use fillna() to replace missing entries with this value.
 - Write a Pandas program to iterate over DataFrame columns, determine the mode, and substitute NaNs with the most common value.
 
Go to:
PREV : Find Indexes of Missing Values.
NEXT :
 Create a Heatmap of Missing Value Distribution.
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
