w3resource

Pandas: Replace the missing values with the most frequent values present in each column


19. Replace Missing Values with Most Frequent Value

Write a Pandas program to replace the missing values with the most frequent values present in each column of a given dataframe.

Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,np.nan,65.26,110.5,948.5,np.nan,5760,1983.43,np.nan,250.45, 75.29,3045.6],
'sale_amt':[10.5,20.65,np.nan,11.5,98.5,np.nan,57,19.43,np.nan,25.45, 75.29,35.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df) 
print("\nReplace the missing values with the most frequent values present in each column:")
result = df.fillna(df.mode().iloc[0])
print(result)

Sample Output:

Original Orders DataFrame:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1       NaN        NaN     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003         NaN
4       NaN     948.50     ...             3002      5002.0
5   70005.0        NaN     ...             3001      5001.0
6       NaN    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004         NaN
8   70003.0        NaN     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10      NaN      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001         NaN

[12 rows x 6 columns]

Replace the missing values with the most frequent values present in each column:
     ord_no  purch_amt     ...      customer_id salesman_id
0   70001.0     150.50     ...             3002      5002.0
1   70001.0      65.26     ...             3001      5003.0
2   70002.0      65.26     ...             3001      5001.0
3   70004.0     110.50     ...             3003      5001.0
4   70001.0     948.50     ...             3002      5002.0
5   70005.0      65.26     ...             3001      5001.0
6   70001.0    5760.00     ...             3001      5001.0
7   70010.0    1983.43     ...             3004      5001.0
8   70003.0      65.26     ...             3003      5003.0
9   70012.0     250.45     ...             3002      5002.0
10  70001.0      75.29     ...             3001      5003.0
11  70013.0    3045.60     ...             3001      5001.0

[12 rows x 6 columns]

For more Practice: Solve these Related Problems:

  • Write a Pandas program to impute missing values in each column with its mode value.
  • Write a Pandas program to replace NaNs with the most frequently occurring value in each specified column.
  • Write a Pandas program to compute the mode of a column and then use fillna() to replace missing entries with this value.
  • Write a Pandas program to iterate over DataFrame columns, determine the mode, and substitute NaNs with the most common value.

Go to:


Previous: Write a Pandas program to find the Indexes of missing values in a given DataFrame.
Next: Write a Pandas program to create a hitmap for more information about the distribution of missing values in a given DataFrame.

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.