w3resource

Pandas Joining and merging DataFrame : Exercises, Practice, Solution

[An editor is available at the bottom of the page to write and execute the scripts.]

Pandas Joining and merging DataFrame [ 15 exercises with solution]

1. Write a Pandas program to join the two given dataframes along rows and assign all data. Go to the editor
Test Data:

student_data1:
  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
student_data2:
  student_id              name  marks
0         S4  Scarlette Fisher    201
1         S5  Carla Williamson    200
2         S6       Dante Morse    198
3         S7    Kaiser William    219
4         S8   Madeeha Preston    201
Click me to see the sample solution

2. Write a Pandas program to join the two given dataframes along columns and assign all data. Go to the editor
Test Data:

student_data1:
  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
student_data2:
  student_id              name  marks
0         S4  Scarlette Fisher    201
1         S5  Carla Williamson    200
2         S6       Dante Morse    198
3         S7    Kaiser William    219
4         S8   Madeeha Preston    201
Click me to see the sample solution

3. Write a Pandas program to append rows to an existing DataFrame and display the combined data. Go to the editor
Test Data:

tudent_data1
  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
New Row(s)
student_id                  S6
name          Scarlette Fisher
marks                      205
dtype: object
Click me to see the sample solution

4. Write a Pandas program to append a list of dictioneries or series to a existing DataFrame and display the combined data. Go to the editor
Test Data:

  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
Dictionary:
student_id                  S6
name          Scarlette Fisher
marks                      205
dtype: object
Click me to see the sample solution

5. Write a Pandas program to join the two given dataframes along rows and merge with another dataframe along the common column id. Go to the editor
Test Data:

student_data1:
  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
student_data2:
  student_id              name  marks
0         S4  Scarlette Fisher    201
1         S5  Carla Williamson    200
2         S6       Dante Morse    198
3         S7    Kaiser William    219
4         S8   Madeeha Preston    201
exam_data:
   student_id  exam_id
0          S1       23
1          S2       45
2          S3       12
3          S4       67
4          S5       21
5          S7       55
6          S8       33
7          S9       14
8         S10       56
9         S11       83
10        S12       88
11        S13       12
Click me to see the sample solution

6. Write a Pandas program to join the two dataframes using the common column of both dataframes. Go to the editor
Test Data:

student_data1:
  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
student_data2:
  student_id              name  marks
0         S4  Scarlette Fisher    201
1         S5  Carla Williamson    200
2         S6       Dante Morse    198
3         S7    Kaiser William    219
4         S8   Madeeha Preston    201
Click me to see the sample solution

7. Write a Pandas program to join the two dataframes with matching records from both sides where available. Go to the editor
Test Data:

student_data1:
  student_id              name  marks
0         S1  Danniella Fenton    200
1         S2      Ryder Storey    210
2         S3      Bryce Jensen    190
3         S4         Ed Bernal    222
4         S5       Kwame Morin    199
student_data2:
  student_id              name  marks
0         S4  Scarlette Fisher    201
1         S5  Carla Williamson    200
2         S6       Dante Morse    198
3         S7    Kaiser William    219
4         S8   Madeeha Preston    201
Click me to see the sample solution

8. Write a Pandas program to join (left join) the two dataframes using keys from left dataframe only. Go to the editor
Test Data:

data1:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
data2:
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3
Click me to see the sample solution

9. Write a Pandas program to join two dataframes using keys from right dataframe only. Go to the editor
Test Data:

data1:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
data2:
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3
Click me to see the sample solution

10. Write a Pandas program to merge two given datasets using multiple join keys. Go to the editor
Test Data:

data1:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
data2:
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3
Click me to see the sample solution

11. Write a Pandas program to create a new DataFrame based on existing series, using specified argument and override the existing columns names. Go to the editor
Click me to see the sample solution

12. Write a Pandas program to create a combination from two dataframes where a column id combination appears more than once in both dataframes.Go to the editor
Test Data:

data1:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
data2:
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3
Click me to see the sample solution

13. Write a Pandas program to combine the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Go to the editor
Test Data:

data1:
     A   B
K0  A0  B0
K1  A1  B1
K2  A2  B2
data2:
     C   D
K0  C0  D0
K2  C2  D2
K3  C3  D3
Click me to see the sample solution

14. Write a Pandas program to merge two given dataframes with different columns. Go to the editor
Test Data:

data1:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
data2:
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3
Click me to see the sample solution

15. Write a Pandas program to Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. Go to the editor
Test Data:

Original DataFrames:
     A  B
0  NaN  3
1  0.0  4
2  NaN  5
   A    B
0  1  3.0
1  1  NaN
2  3  3.0
Click me to see the sample solution

Python Code Editor:


More to Come !

Do not submit any solution of the above exercises at here, if you want to contribute go to the appropriate exercise page.

Test your Python skills with w3resource's quiz



Python: Tips of the Day

How to make a flat list out of list of lists?

Given a list of lists l

flat_list = [item for sublist in l for item in sublist]

which means:

flat_list = []
for sublist in l:
    for item in sublist:
        flat_list.append(item)

is faster than the shortcuts posted so far. (l is the list to flatten.) Here is the corresponding function:

flatten = lambda l: [item for sublist in l for item in sublist]

As evidence, you can use the timeit module in the standard library:

$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 143 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 969 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 3: 1.1 msec per loop

Explanation: the shortcuts based on + (including the implied use in sum) are, of necessity, O(L**2) when there are L sublists -- as the intermediate result list keeps getting longer, at each step a new intermediate result list object gets allocated, and all the items in the previous intermediate result must be copied over (as well as a few new ones added at the end). So, for simplicity and without actual loss of generality, say you have L sublists of I items each: the first I items are copied back and forth L-1 times, the second I items L-2 times, and so on; total number of copies is I times the sum of x for x from 1 to L excluded, i.e., I * (L**2)/2.

The list comprehension just generates one list, once, and copies each item over (from its original place of residence to the result list) also exactly once.

Ref: https://bit.ly/3dKsNTR