NumPy: Logic functions routines
Logic functions routines
Truth value testing | ||
Name | Description | Syntax |
---|---|---|
all() | Test whether all array elements along a given axis evaluate to True. | numpy.all(a, axis=None, out=None, keepdims=<no value>) |
any() | Test whether any array element along a given axis evaluates to True. | numpy.any(a, axis=None, out=None, keepdims=<no value>) |
Array contents | ||
Name | Description | Syntax |
isfinite() | Test element-wise for finiteness (not infinity or not Not a Number). | numpy.isfinite(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'isfinite'> |
isinf() | Test element-wise for positive or negative infinity. | numpy.isinf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'isinf'> |
isnan() | Test element-wise for NaN and return result as a boolean array. | numpy.isnan(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'isnan'> |
isnat() | Test element-wise for NaT (not a time) and return result as a boolean array. | numpy.isnat(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'isnat'> |
isneginf() | Test element-wise for negative infinity, return result as bool array. | numpy.isneginf(x, out=None) |
isposinf() | Test element-wise for positive infinity, return result as bool array. | numpy.isposinf(x, out=None) |
Array type testing | ||
Name | Description | Syntax |
iscomplex() | Returns a bool array, where True if input element is complex. | numpy.iscomplex(x) |
iscomplexobj() | Check for a complex type or an array of complex numbers. | numpy.iscomplexobj(x) |
isfortran() | Returns True if the array is Fortran contiguous but not C contiguous. | numpy.isfortran(a) |
isreal() | Returns a bool array, where True if input element is real. | numpy.isreal(x) |
isrealobj() | Return True if x is a not complex type or an array of complex numbers. | numpy.isrealobj(x) |
isscalar() | Returns True if the type of num is a scalar type. | numpy.isscalar(num) |
Logical operations | ||
Name | Description | Syntax |
logical_and() | Compute the truth value of x1 AND x2 element-wise. | numpy.logical_and(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_and'> |
logical_or() | Compute the truth value of x1 OR x2 element-wise. | numpy.logical_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_or'> |
logical_not() | Compute the truth value of NOT x element-wise. | numpy.logical_not(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_not'> |
logical_xor() | Compute the truth value of x1 XOR x2, element-wise. | numpy.logical_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'logical_xor'> |
Comparison | ||
Name | Description | Syntax |
allclose() | Returns True if two arrays are element-wise equal within a tolerance. | numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False) |
isclose() | Returns a boolean array where two arrays are element-wise equal within a tolerance. | numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False) |
array_equal() | True if two arrays have the same shape and elements, False otherwise. | numpy.array_equal(a1, a2) |
array_equiv() | Returns True if input arrays are shape consistent and all elements equal. | numpy.array_equiv(a1, a2) |
greater() | Return the truth value of (x1 > x2) element-wise. | numpy.greater(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'greater'> |
greater_equal() | Return the truth value of (x1 >= x2) element-wise. | numpy.greater_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'greater_equal'> |
less() | Return the truth value of (x1 < x2) element-wise. | numpy.less(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'less'> |
less_equal() | Return the truth value of (x1 =< x2) element-wise. | numpy.less_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'less_equal'> |
equal() | Return (x1 == x2) element-wise. | numpy.equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'equal'> |
not_equal() | Return (x1 != x2) element-wise. | numpy.not_equal(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'not_equal'> |
Previous: NumPy ndarray
Next: all() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/numpy/logic-functions/index.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics