w3resource

Pandas Series: aggregate() function

Aggregation with pandas series

The aggregate() function uses to one or more operations over the specified axis.

Syntax:

Series.aggregate(self, func, axis=0, *args, **kwargs)
Pandas Series aggregate image

Parameters:

Name Description Type/Default Value Required / Optional
func Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply.

Accepted combinations are:

  • function
  • string function name
  • list of functions and/or function names, e.g. [np.sum, 'mean']
  • dict of axis labels -> functions, function names or list of such.
unction, str, list or dict Required
axis Parameter needed for compatibility with DataFrame. {0 or ‘index’} Required
args Positional arguments to pass to func.   Required
**kwds Keyword arguments to pass to func.   Required

Returns: scalar, Series or DataFrame
The return can be:

  • scalar : when Series.agg is called with single function
  • Series : when DataFrame.agg is called with a single function
  • DataFrame : when DataFrame.agg is called with several functions
Return scalar, Series or DataFrame.

Notes:agg is an alias for aggregate. Use the alias.
A passed user-defined-function will be passed a Series for evaluation.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 4, 6, 8, 10, 12])
s

Output:

0     2
1     4
2     6
3     8
4    10
5    12
dtype: int64

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 4, 6, 8, 10, 12])
s.agg('min')

Output:

2

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 4, 6, 8, 10, 12])
s.agg('min')
s.agg(['min', 'max'])

Output:

min     2
max    12
dtype: int64

Previous: Aggregation in Pandas
Next: Call function on self producing a Series in Pandas



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-aggregate.php