w3resource

Pandas Series: apply() function

Invoke a python function on values of Pandas series

The apply() function is used to invoke a python function on values of Series.

Syntax:

Series.apply(self, func, convert_dtype=True, args=(), **kwds)
Pandas Series apply image

Parameters:

Name Description Type/Default Value Required / Optional
func Python function or NumPy ufunc to apply. function Required
convert_dtype Try to find better dtype for elementwise function results. If False, leave as dtype=object. bool
Default Value: True
Required
args Positional arguments passed to func after the series value. tuple Required
**kwds Additional keyword arguments passed to func.   Required

Returns: Series or DataFrame
If func returns a Series object the result will be a DataFrame.

Example - Create a series with typical summer temperatures for each city:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([31, 27, 11],
              index=['Beijing', 'Los Angeles', 'Berlin'])
s

Output:

Beijing        31
Los Angeles    27
Berlin         11
dtype: int64
Pandas Series apply image

Example - Square the values by defining a function and passing it as an argument to apply():

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([31, 27, 11],
              index=['Beijing', 'Los Angeles', 'Berlin'])
def square(x):
    return x ** 2
s.apply(square)

Output:

Beijing        961
Los Angeles    729
Berlin         121
dtype: int64

Example - Square the values by passing an anonymous function as an argument to apply():

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([31, 27, 11],
              index=['Beijing', 'Los Angeles', 'Berlin'])
def square(x):
    return x ** 2
s.apply(lambda x: x ** 2)

Output:

Beijing        961
Los Angeles    729
Berlin         121
dtype: int64

Example - Define a custom function that needs additional positional arguments and pass these additional arguments using the args keyword:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([31, 27, 11],
              index=['Beijing', 'Los Angeles', 'Berlin'])
def subtract_custom_value(x, custom_value):
    return x - custom_value
s.apply(subtract_custom_value, args=(4,))

Output:

Beijing        27
Los Angeles    23
Berlin          7
dtype: int64

Example - Define a custom function that takes keyword arguments and pass these arguments to apply:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([31, 27, 11],
              index=['Beijing', 'Los Angeles', 'Berlin'])
def add_custom_values(x, **kwargs):
    for month in kwargs:
        x += kwargs[month]
    return x
s.apply(add_custom_values, november=18, december=16, january=15)

Output:

Beijing        80
Los Angeles    76
Berlin         60
dtype: int64

Example - Use a function from the Numpy library:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([31, 27, 11],
              index=['Beijing', 'Los Angeles', 'Berlin'])
def add_custom_values(x, **kwargs):
    for month in kwargs:
        x += kwargs[month]
    return x
s.apply(np.log)

Output:

Beijing        3.433987
Los Angeles    3.295837
Berlin         2.397895
dtype: float64

Previous: Compute the dot product between the Series and the columns in Pandas
Next: Aggregation in Pandas



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-apply.php