Pandas Series: at_time() function
Select all the values in a row at the particular time of the day
The at_time() function is used to select values at particular time of day (e.g. 10:30AM).
Syntax:
Series.at_time(self, time, asof=False, axis=None)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
time | datetime.time or str | Required | |
axis | For DataFrame, if not None, only use these columns to check for NaNs. | {0 or ‘index’, 1 or ‘columns’} Default Value: 0 |
Required |
Returns: Series or DataFrame
Raises: TypeError
If the index is not a DatetimeIndex
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
i = pd.date_range('2019-04-09', periods=5, freq='12H')
ts = pd.DataFrame({'P': [2, 3, 4, 5, 6]}, index=i)
ts
Output:
P 2019-04-09 00:00:00 2 2019-04-09 12:00:00 3 2019-04-10 00:00:00 4 2019-04-10 12:00:00 5 2019-04-11 00:00:00 6
Python-Pandas Code:
import numpy as np
import pandas as pd
i = pd.date_range('2019-04-09', periods=5, freq='12H')
ts = pd.DataFrame({'P': [2, 3, 4, 5, 6]}, index=i)
ts.at_time('12:00')
Output:
P 2019-04-09 12:00:00 3 2019-04-10 12:00:00 5
Previous: Localize tz-naive index of a Pandas Series
Next: Select values between particular times of the day
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/series/series-at_time.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics