Pandas Series: tz_localize() function
Localize tz-naive index of a Pandas Series
The tz_localize() function is used to localizes the Index. Localize tz-naive index of a Series or DataFrame to target time zone.
This operation localizes the Index. To localize the values in a timezone-naive Series, use Series.dt.tz_localize().
Syntax:
Series.tz_localize(self, tz, axis=0, level=None, copy=True, ambiguous='raise', nonexistent='raise')
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
tz | String or pytz.timezone object | string or pytz.timezone object | Required |
axis | The axis to localize. | Required | |
level | If axis ia a MultiIndex, localize a specific level. Otherwise must be None | int, str, Default Value: None |
Required |
copy | Also make a copy of the underlying data | boolean Default Value: True |
Required |
ambiguous | When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled.
|
‘infer’, bool-ndarray, ‘NaT’ Default Value: ‘raise’ |
Required |
nonexistent | A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are:
|
str Default Value: ‘raise’ |
Required |
Returns: Series or DataFrame
Same type as the input.
Raises: TypeError if the TimeSeries is tz-aware and tz is not None.
Example - Localize local times:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([1],
index=pd.DatetimeIndex(['2019-09-15 01:30:00']))
s.tz_localize('CET')
Output:
2019-09-15 01:30:00+02:00 1 dtype: int64
Example - Be careful with DST changes. When there is sequential data, pandas can infer the DST time:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(range(6), index=pd.DatetimeIndex([
'2019-10-28 01:30:00',
'2019-10-28 02:00:00',
'2019-10-28 02:30:00',
'2019-10-28 02:30:00',
'2019-10-28 03:00:00',
'2019-10-28 03:30:00']))
s.tz_localize('CET', ambiguous='infer')
Output:
2019-10-28 01:30:00+01:00 0 2019-10-28 02:00:00+01:00 1 2019-10-28 02:30:00+01:00 2 2019-10-28 02:30:00+01:00 3 2019-10-28 03:00:00+01:00 4 2019-10-28 03:30:00+01:00 5 dtype: int64
Example - In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(range(3), index=pd.DatetimeIndex([
'2019-10-28 01:20:00',
'2019-10-28 02:36:00',
'2019-10-28 03:46:00']))
s.tz_localize('CET', ambiguous=np.array([True, True, False]))
Output:
2019-10-28 01:20:00+01:00 0 2019-10-28 02:36:00+01:00 1 2019-10-28 03:46:00+01:00 2 dtype: int64
Previous: Resample Pandas time-series data
Next: Select all the values in a row at the particular time of the day
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/series/series-tz_localize.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics