w3resource

Pandas Series: dt.to_period() function

Series.dt.to_period() function

Cast to PeriodArray/Index at a particular frequency.

Converts DatetimeArray/Index to PeriodArray/Index.

Syntax:

Series.dt.to_period(self, *args, **kwargs)

Parameter:

Name Description Type / Default Value Required / Optional
freq One of pandas’ offset strings or an Offset object. Will be inferred by default. str or Offset Optional

Returns: PeriodArray/Index

Raises: ValueError
When converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame({"y": [1, 2, 3]},
                  index=pd.to_datetime(["2019-03-31 00:00:00",
                                        "2019-05-31 00:00:00",
                                        "2019-08-31 00:00:00"]))
df.index.to_period("M")

Output:

PeriodIndex(['2019-03', '2019-05', '2019-08'], dtype='period[M]', freq='M')

Example - Infer the daily frequency:

Python-Pandas Code:

import numpy as np
import pandas as pd
idx = pd.date_range("2019-01-01", periods=2)
idx.to_period()

Output:

PeriodIndex(['2019-01-01', '2019-01-02'], dtype='period[D]', freq='D')

Previous: Series.dt.is_leap_year() function
Next: Series.dt.to_pydatetime() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-dt-to_period.php