Pandas Series: dt.tz_localize() function
Series.dt.tz_localize() function
The tz_localize() function is used to localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index.
This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. Time zone localization helps to switch from time zone aware to time zone unaware objects.
Syntax:
Series.dt.tz_localize(self, *args, **kwargs)
Parameter:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
tz | Time zone to convert timestamps to. Passing None will remove the time zone information preserving local time. | str, pytz.timezone, dateutil.tz.tzfile or None | Required |
ambiguous | When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled.
|
‘infer’, ‘NaT’, bool array, default ‘raise’ | Required |
nonexistent | A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST.
|
'shift_forward', 'shift_backward', 'NaT', timedelta, default 'raise' | Required |
Returns: Same type as self
Array/Index converted to the specified time zone.
Raises: TypeError
If the Datetime Array/Index is tz-aware and tz is not None.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
tz_naive = pd.date_range('2019-03-01 09:00', periods=3)
tz_naive
Output:
DatetimeIndex(['2019-03-01 09:00:00', '2019-03-02 09:00:00', '2019-03-03 09:00:00'], dtype='datetime64[ns]', freq='D')
Example - Localize DatetimeIndex in US/Eastern time zone:
Python-Pandas Code:
import numpy as np
import pandas as pd
tz_aware = tz_naive.tz_localize(tz='US/Eastern')
tz_aware
Output:
DatetimeIndex(['2019-03-01 09:00:00-05:00', '2019-03-02 09:00:00-05:00', '2019-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D')
Example - With the tz=None, we can remove the time zone information while keeping the local time (not converted to UTC):
Python-Pandas Code:
import numpy as np
import pandas as pd
tz_aware = tz_naive.tz_localize(tz='US/Eastern')
tz_aware.tz_localize(None)
Output:
DatetimeIndex(['2019-03-01 09:00:00', '2019-03-02 09:00:00', '2019-03-03 09:00:00'], dtype='datetime64[ns]', freq='D')
Example - In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.to_datetime(pd.Series(['2019-10-28 01:20:00',
'2019-10-28 02:36:00',
'2019-10-28 03:46:00']))
s.dt.tz_localize('CET', ambiguous=np.array([True, True, False]))
Output:
0 2019-10-28 01:20:00+01:00 1 2019-10-28 02:36:00+01:00 2 2019-10-28 03:46:00+01:00 dtype: datetime64[ns, CET]
Previous: Series.dt.to_pydatetime() function
Next: Series.dt.tz_convert() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/series/series-dt-tz_localize.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics