w3resource

Pandas: Data Manipulation - melt() function

melt() function

Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Syntax:

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)

Parameters:

Name Description Type Required / Optional
frame DataFrame Required
id_vars Column(s) to use as identifier variables. tuple, list, or ndarray Optional
value_vars Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars. tuple, list, or ndarray Optional
var_name Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’. scalar Required
value_name Name to use for the ‘value’ column. scalar, default ‘value’ Required
col_level If columns are a MultiIndex then use this level to melt. int or string Optional

Returns: Unpivoted DataFrame.


Download the Pandas DataFrame Notebooks from here.

Previous: Data Manipulations
Next: pivot() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/melt.php