w3resource

Pandas: Data Manipulation - to_datetime() function

to_datetime() function

The to_datetime() function is used to convert argument to datetime.

Syntax:

pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix', cache=True)

Parameters:

Name Description Type / Default Value Required / Optional
arg scalar, list, tuple, 1-d array, or Series Required
errors
  • If 'raise', then invalid parsing will raise an exception
  • If 'coerce', then invalid parsing will be set as NaN
  • If 'ignore', then invalid parsing will return the input
{'ignore', 'raise', 'coerce'},
Default Value: 'raise'
Optional
dayfirst Specify a date parse order if arg is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior). boolean
Default Value: False
Optional
yearfirst Specify a date parse order if arg is str or its list-likes.
  • If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.
  • If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).
Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a known bug, based on dateutil behavior).
boolean
Default Value: False
Optional
utc Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well). boolean
Default Value: None
Optional
format trftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds. See strftime documentation for more information on choices: string
Default Value: None
Required
exact
  • If True, require an exact format match.
  • If False, allow the format to match anywhere in the target string.
boolean
Default Value: True
Required
unit unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with unit=’ms’ and origin=’unix’ (the default), this would calculate the number of milliseconds to the unix epoch start string
Default Value: 'ns'
Required
infer_datetime_format If True and no format is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. boolean
Default Value: False
Required
origin Define the reference date. The numeric values would be parsed as number of units (defined by unit) since this reference date.
  • If 'unix' (or POSIX) time; origin is set to 1970-01-01.
  • If 'julian', unit must be 'D', and origin is set to beginning of Julian Calendar. Julian day number 0 is assigned to the day starting at noon on January 1, 4713 BC.
  • If Timestamp convertible, origin is set to Timestamp identified by origin.
scalar
Default Value: 'unix'
Required
cache If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. boolean
Default Value: True
Required

Returns: datetime if parsing succeeded.
Return type depends on input:

  • list-like: DatetimeIndex
  • Series: Series of datetime64 dtype
  • scalar: Timestamp

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: to_numeric() function
Next: to_timedelta() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/to_datetime.php