Pandas: Data Manipulation - to_timedelta() function
to_timedelta() function
The to_timedelta() function is used to convert argument to datetime.
Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type.
Syntax:
pandas.to_timedelta(arg, unit='ns', errors='raise')
Parameters:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
arg | The data to be converted to timedelta. | strtimedelta, list-like or Series | Required |
unit | Denotes the unit of the arg. Possible values: ('Y', 'M', 'W', 'D', 'days', 'day', 'hours','hour', 'hr', 'h', 'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds', 'sec', 'second', 'ms', 'milliseconds', 'millisecond', 'milli', 'millis', 'L', 'us', 'microseconds', 'microsecond', 'micro', 'micros', 'U', 'ns', 'nanoseconds', 'nano', 'nanos', 'nanosecond', 'N'). | str Default Value: 'ns' |
Required |
errors |
|
boolea{‘ignore’, ‘raise’, ‘coerce’}, Default Value: ‘raise’ n |
Required |
Returns: timedelta64 or numpy.array of timedelta64
Output type returned if parsing succeeded.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: to_datetime() function
Next: date_range() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/to_timedelta.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics