w3resource

Pandas Series: drop() function

Remove series with specified index labels

The drop() function is used to get series with specified index labels removed.

Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.

Syntax:

Series.drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
Pandas Series drop image

Parameters:

Name Description Type/Default Value Required / Optional
labels Index labels to drop. single label or list-like Required
axis Redundant for application on Series. 0
Default Value: 0
Required
index, columns Redundant for application on Series, but index can be used instead of labels. Default Value: None Required
level For MultiIndex, level for which the labels will be removed. int or level name optional
inplace If True, do operation inplace and return None. bool
Default Value: False
Required
errors If ‘ignore’, suppress error and only existing labels are dropped. {‘ignore’, ‘raise’}
Default Value: ‘raise’
Required

Returns: Series
Series with specified index labels removed.

Raises: KeyError
If none of the labels are found in the index.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(data=np.arange(3), index=['P', 'Q', 'R'])
s

Output:

P    0
Q    1
R    2
dtype: int32
Pandas Series drop image

Example - Drop labels Q en R:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(data=np.arange(3), index=['P', 'Q', 'R'])
s.drop(labels=['Q', 'R'])

Output:

P    0
dtype: int32

Example - Drop 2nd level label in MultiIndex Series:

Python-Pandas Code:

import numpy as np
import pandas as pd
midx = pd.MultiIndex(levels=[['dog', 'cow', 'cat'],
                             ['speed', 'weight', 'length']],
                     codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
                            [0, 1, 2, 0, 1, 2, 0, 1, 2]])
s = pd.Series([50, 30, 1.6, 30, 250, 1.5, 40, 18, 1.1],
              index=midx)
s

Output:

dog  speed      50.0
     weight     30.0
     length      1.6
cow  speed      30.0
     weight    250.0
     length      1.5
cat  speed      40.0
     weight     18.0
     length      1.1
dtype: float64

Python-Pandas Code:

import numpy as np
import pandas as pd
midx = pd.MultiIndex(levels=[['dog', 'cow', 'cat'],
                             ['speed', 'weight', 'length']],
                     codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
                            [0, 1, 2, 0, 1, 2, 0, 1, 2]])
s = pd.Series([50, 30, 1.6, 30, 250, 1.5, 40, 18, 1.1],
              index=midx)
s.drop(labels='weight', level=1)

Output:

dog  speed     50.0
     length     1.6
cow  speed     30.0
     length     1.5
cat  speed     40.0
     length     1.1
dtype: float64

Previous: Series containing counts of unique values in Pandas
Next: Series-droplevel() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-drop.php