w3resource

Pandas Series: value_counts() function

Series containing counts of unique values in Pandas

The value_counts() function is used to get a Series containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Syntax:

Series.value_counts(self, normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Pandas Series value_count image

Parameters:

Name Description Type/Default Value Required / Optional
normalize If True then the object returned will contain the relative frequencies of the unique values. boolean
Default Value: False
Required
sort Sort by frequencies. boolean
Default Value: True
Required
ascending Sort in ascending order. boolean
Default Value: False
Required
bins IRather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data. integer Optional
dropna Don’t include counts of NaN. boolean
Default Value: True
Required

Returns: Series

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
index = pd.Index([2, 2, 5, 3, 4, np.nan])
index.value_counts()

Output:

2.0    2
4.0    1
3.0    1
5.0    1
dtype: int64
Pandas Series value_count image

Example - With normalize set to True, returns the relative frequency by dividing all values by the sum of values:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 2, 5, 3, 4, np.nan])
s.value_counts(normalize=True)

Output:

2.0    0.4
4.0    0.2
3.0    0.2
5.0    0.2
dtype: float64
Pandas Series value_count image

Example - bins:

Bins can be useful for going from a continuous variable to a categorical variable; instead of counting unique apparitions of values, divide the index in the specified number of half-open bins.

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 2, 5, 3, 4, np.nan])
s.value_counts(bins=3)

Output:

(1.9960000000000002, 3.0]    3
(4.0, 5.0]                   1
(3.0, 4.0]                   1
dtype: int64

Example - dropna:

With dropna set to False we can also see NaN index values.

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 2, 5, 3, 4, np.nan])
s.value_counts(dropna=False)

Output:

2.0    2
NaN    1
4.0    1
3.0    1
5.0    1
dtype: int64
Pandas Series value_count image

Previous: Unique values of Series object in Pandas
Next: Remove series with specified index labels



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-value_counts.php