Pandas Series: cumprod() function
Cumulative product of a Pandas series
The cumprod() function is used to get cumulative product over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative product.
Syntax:
Series.cumprod(self, axis=None, skipna=True, *args, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | The index or the name of the axis. 0 is equivalent to None or ‘index’. | {0 or ‘index’, 1 or ‘columns’} Default Value: 0 |
Required |
skipna | Exclude NA/null values. If an entire row/column is NA, the result will be NA. | boolean Default Value: True |
Required |
*args, **kwargs | Additional keywords have no effect but might be accepted for compatibility with NumPy. | Required |
Returns: scalar or Series
Example - Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, np.nan, 4, -3, 0])
s
Output:
0 2.0 1 NaN 2 4.0 3 -3.0 4 0.0 dtype: float64
Example - By default, NA values are ignored:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, np.nan, 4, -3, 0])
s.cumprod()
Output:
0 2.0 1 NaN 2 8.0 3 -24.0 4 -0.0 dtype: float64
Example - To include NA values in the operation, use skipna=False:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, np.nan, 4, -3, 0])
s.cumprod(skipna=False)
Output:
0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or axis='index'.
Previous: Cumulative minimum over a Pandas DataFrame or Series axis
Next: Cumulative sum over a Pandas DataFrame or Series axis
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/series/series-cumprod.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics