Pandas Series: cummax() function
Cumulative maximum over a Pandas DataFrame or Series axis
The cummax() function is used to get cumulative maximum over a DataFrame or Series axis.
Syntax:
Series.cummax(self, axis=None, skipna=True, *args, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | The index or the name of the axis. 0 is equivalent to None or ‘index’. | {0 or ‘index’, 1 or ‘columns’} Default Value: 0 |
Required |
skipna | Exclude NA/null values. If an entire row/column is NA, the result will be NA. | boolean Default Value: True |
Required |
*args, **kwargs | Additional keywords have no effect but might be accepted for compatibility with NumPy. | Required |
Returns: scalar or Series
Example - Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, np.nan, 7, -3, 0])
s
Output:
0 2.0 1 NaN 2 7.0 3 -3.0 4 0.0 dtype: float64
Example - By default, NA values are ignored:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, np.nan, 7, -3, 0])
s.cummax()
Output:
0 2.0 1 NaN 2 7.0 3 7.0 4 7.0 dtype: float64
Example - To include NA values in the operation, use skipna=False:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, np.nan, 7, -3, 0])
s.cummax(skipna=False)
Output:
0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
Example - DataFrame:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[3.0, 2.0],
[5.0, np.nan],
[4.0, 0.0]],
columns=list('XY'))
df
Output:
X Y 0 3.0 2.0 1 5.0 NaN 2 4.0 0.0
Example - By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None or axis='index':
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[3.0, 2.0],
[5.0, np.nan],
[4.0, 0.0]],
columns=list('XY'))
df.cummax()
Output:
X Y 0 3.0 2.0 1 5.0 NaN 2 5.0 2.0
Example - To iterate over columns and find the maximum in each row, use axis=1:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([[3.0, 2.0],
[5.0, np.nan],
[4.0, 0.0]],
columns=list('XY'))
df.cummax(axis=1)
Output:
X Y 0 3.0 3.0 1 5.0 NaN 2 4.0 4.0
Previous: Compute covariance with Pandas Series
Next: Cumulative minimum over a Pandas DataFrame or Series axis
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/series/series-cummax.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics