w3resource

Python TextCalendar Module: monthrange() method

monthrange() method

The monthrange() method is used to get weekday of first day of the month and number of days in month, for the specified year and month.

Syntax:

monthrange(year, month)

Parameters:

Name Description Required /
Optional
Type
year Year to get weekday of the first day of the month and number of days in month. Required Number
month Month to get weekday of the first day of the month and number of days in a month. Required Number

Example of monthrange() method

import calendar
print(calendar.monthrange(2016,5))

Output:

(6, 31)

Previous: weekheader()
Next: monthcalendar()

Test your Python skills with w3resource's quiz



Python: Tips of the Day

How to make a flat list out of list of lists?

Given a list of lists l

flat_list = [item for sublist in l for item in sublist]

which means:

flat_list = []
for sublist in l:
    for item in sublist:
        flat_list.append(item)

is faster than the shortcuts posted so far. (l is the list to flatten.) Here is the corresponding function:

flatten = lambda l: [item for sublist in l for item in sublist]

As evidence, you can use the timeit module in the standard library:

$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 143 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 969 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 3: 1.1 msec per loop

Explanation: the shortcuts based on + (including the implied use in sum) are, of necessity, O(L**2) when there are L sublists -- as the intermediate result list keeps getting longer, at each step a new intermediate result list object gets allocated, and all the items in the previous intermediate result must be copied over (as well as a few new ones added at the end). So, for simplicity and without actual loss of generality, say you have L sublists of I items each: the first I items are copied back and forth L-1 times, the second I items L-2 times, and so on; total number of copies is I times the sum of x for x from 1 to L excluded, i.e., I * (L**2)/2.

The list comprehension just generates one list, once, and copies each item over (from its original place of residence to the result list) also exactly once.

Ref: https://bit.ly/3dKsNTR