w3resource

SQL CAST() inside AVG() for decimal value

CAST() function inside AVG() function

The SQL AVG() function returns the average value with default decimal places. The CAST() is used to increase or decrease the decimal places of a value. The CAST() function is much better at preserving the decimal places when converting decimal and numeric data types. The 'AS DECIMAL' followed by the format specification is used with CAST() for making a numeric value to a specific decimal place value.

Syntax :

CAST [ expression]
AS [data_type] [specified_format];

Parameters:

Name Description
expression Expression made up of a single constant, variable, scalar function, or column name and can also be the pieces of a SQL query that compare values against other values or perform arithmetic calculations.
data_type CHAR(), VARCHAR(), DECIMAL(), FLOAT etc.
specified_format Specified format.

Example :

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

To get the data the average of 'advance_amount' up to 2 decimal places form the 'orders' table, the following SQL statement can be used:


SELECT CAST(AVG(advance_amount) AS DECIMAL(10,2))  -- Selects the average value of the 'advance_amount' column, casted to a decimal with precision 10 and scale 2
FROM orders;  -- Specifies the 'orders' table as the source of data

Explanation:

  • SELECT CAST(AVG(advance_amount) AS DECIMAL(10,2)): This is the main part of the SQL query. It uses the AVG() function to calculate the average value of the 'advance_amount' column in the 'orders' table. The result of AVG() is then casted to a decimal data type with a precision of 10 digits and a scale of 2 digits using the CAST() function. This ensures that the average value is rounded to two decimal places.
  • FROM orders: This specifies the source of the data for the query, which is the 'orders' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'orders' table.

Output:

CAST(AVG(ADVANCE_AMOUNT)ASDECIMAL(10,2))
----------------------------------------
                                  629.17

SQL AVG() using CAST() inside the AVG()

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get the data of 'agent_code', number of customer, average of 'opening_amt' rounded upto two decimal with a heading 'SQLAVG' for each agent from the customer table with the following condition -

1. each 'agent_code' should come in a group

the following SQL statement can be used :


SELECT agent_code, COUNT(*),  -- Selects the agent code, counts the number of rows for each agent, and calculates the average opening amount for each agent
AVG(CAST(opening_amt AS DECIMAL(12,2))) AS SQLAVG  -- Calculates the average opening amount for each agent, rounded to two decimal places
FROM customer  -- Specifies the 'customer' table as the source of data
ff  -- This seems to be a typo or an error in the SQL query. It should be removed.
GROUP BY agent_code;  -- Groups the result set by the agent code

Explanation:

  • SELECT agent_code, COUNT(*),: This is the main part of the SQL query. It selects three columns: 'agent_code', counts the number of rows for each 'agent_code', and calculates the average opening amount for each 'agent_code'.
  • AVG(CAST(opening_amt AS DECIMAL(12,2))) AS SQLAVG: This part calculates the average opening amount for each 'agent_code'. The CAST() function is used to convert the 'opening_amt' column to a decimal data type with a precision of 12 digits and a scale of 2 digits, ensuring accurate arithmetic operations. The AVG() function then calculates the average value of the 'opening_amt' column for each 'agent_code'. The result is rounded to two decimal places. The alias 'SQLAVG' is assigned to this calculated average.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table.
  • ff: This part seems to be a typo or an error in the SQL query. It should be removed as it is not valid syntax.
  • GROUP BY agent_code: This clause groups the result set by the 'agent_code' column. The GROUP BY clause is used to aggregate the rows based on the values in the 'agent_code' column. This means that calculations performed in the SELECT statement will be applied separately for each unique value in the 'agent_code' column.

Output:

AGENT_CODE   COUNT(*)     SQLAVG
---------- ---------- ----------
A002                3 7333.33333
A004                3 8333.33333
A007                2       8000
A009                1       6000
A011                1       5000
A012                1       5000
A010                3 7333.33333
A001                1       8000
A008                3 4333.33333
A006                2       4000
A005                3 6333.33333
A003                2       6000

SQL AVG() using CAST() outside the AVG()

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get the data of 'agent_code', number of customer, average of 'opening_amt' rounded upto two decimal with a heading 'SQLAVG' for each agent from the customer table with following condition -

1. each 'agent_code' should come in a group,

the following SQL statement can be used :


SELECT agent_code, COUNT(*),  -- Selects the agent code and counts the number of rows for each agent
CAST(AVG(opening_amt) AS DECIMAL(12,2)) AS SQLAVG  -- Calculates the average opening amount for each agent and casts it to a decimal with precision 12 and scale 2
FROM customer  -- Specifies the 'customer' table as the source of data
GROUP BY agent_code;  -- Groups the result set by the agent code

Explanation:

  • SELECT agent_code, COUNT(*),: This is the main part of the SQL query. It selects three columns: 'agent_code', counts the number of rows for each 'agent_code', and calculates the average opening amount for each 'agent_code'.
  • CAST(AVG(opening_amt) AS DECIMAL(12,2)) AS SQLAVG: This part calculates the average opening amount for each 'agent_code' using the AVG() function. The result is then casted to a decimal data type with a precision of 12 digits and a scale of 2 digits using the CAST() function. This ensures that the calculated average is rounded to two decimal places. The alias 'SQLAVG' is assigned to this calculated average.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table.
  • GROUP BY agent_code: This clause groups the result set by the 'agent_code' column. The GROUP BY clause is used to aggregate the rows based on the values in the 'agent_code' column. This means that calculations performed in the SELECT statement will be applied separately for each unique value in the 'agent_code' column.

Output:

AGENT_CODE   COUNT(*)     SQLAVG
---------- ---------- ----------
A002                3    7333.33
A004                3    8333.33
A007                2       8000
A009                1       6000
A011                1       5000
A012                1       5000
A010                3    7333.33
A001                1       8000
A008                3    4333.33
A006                2       4000
A005                3    6333.33
A003                2       6000

SQL AVG() with COUNT()

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get the data of 'agent_code', number of each agent and average of 'opening_amt' for each agent with an user defined heading 'SQLAVG' from the customer table with following conditions -

1. each agent must be in a group,

2. and average should come with a heading 'SQLAVG',

the following SQL statement can be used:


SELECT agent_code, COUNT(*),  -- Selects the agent code and counts the number of rows for each agent
AVG(opening_amt) AS SQLAVG  -- Calculates the average opening amount for each agent
FROM customer  -- Specifies the 'customer' table as the source of data
GROUP BY agent_code;  -- Groups the result set by the agent code

Explanation:

  • SELECT agent_code, COUNT(*): This part of the query selects the 'agent_code' column and counts the number of rows for each 'agent_code'. The COUNT(*) function counts all rows in each group.
  • AVG(opening_amt) AS SQLAVG: Here, the query calculates the average opening amount for each 'agent_code' using the AVG() function. The calculated average is given the alias 'SQLAVG'.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table.
  • GROUP BY agent_code: This clause groups the result set by the 'agent_code' column. The GROUP BY clause is used to aggregate the rows based on the values in the 'agent_code' column. This means that calculations performed in the SELECT statement will be applied separately for each unique value in the 'agent_code' column.

Relational Algebra Expression:

Relational Algebra Expression: SQL AVG() with COUNT().

Relational Algebra Tree:

Relational Algebra Tree: SQL AVG() with COUNT().

Output:

AGENT_CODE   COUNT(*)     SQLAVG
---------- ---------- ----------
A002                3 7333.33333
A004                3 8333.33333
A007                2       8000
A009                1       6000
A011                1       5000
A012                1       5000
A010                3 7333.33333
A001                1       8000
A008                3 4333.33333
A006                2       4000
A005                3 6333.33333
A003                2       6000

SQL AVG() on datetime

Sample table: despatch
DES_NUM    DES_DATE  DES_AMOUNT    ORD_NUM ORD_DATE  ORD_AMOUNT AGENT_CODE
---------- --------- ---------- ---------- --------- ---------- ----------
D002       10-JUN-08       2000     200112 30-MAY-08       2000 A007
D005       19-OCT-08       4000     200119 16-SEP-08       4000 A010
D001       12-JAN-08       3800     200113 10-JUN-08       4000 A002
D003       25-OCT-08        900     200117 20-OCT-08        800 A001
D004       20-AUG-08        450     200120 20-JUL-08        500 A002
D006       24-JUL-08       4500     200128 20-JUL-08       3500 A002 

To get the average of ('des_date' - 'ord_date') from the 'despatch' table, the following SQL statement can be used :


SELECT AVG(des_date - ord_date) AS average_despatch_days  -- Calculates the average of the difference between 'des_date' and 'ord_date' columns, and aliases the result as 'average_despatch_days'
FROM despatch;  -- Specifies the 'despatch' table as the source of data

Explanation:

  • SELECT AVG(des_date - ord_date) AS average_despatch_days: This part of the query calculates the average of the difference between the 'des_date' and 'ord_date' columns. It subtracts the 'ord_date' from the 'des_date' for each row, resulting in the difference in days between the dispatch date and order date. The AVG() function then calculates the average of these differences. The result is aliased as 'average_despatch_days'.
  • FROM despatch: This specifies the source of the data for the query, which is the 'despatch' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'despatch' table.

Relational Algebra Expression:

Relational Algebra Expression: SQL AVG() on datetime.

Relational Algebra Tree:

Relational Algebra Tree: SQL AVG() on datetime.

Output:

AVERAGE_DESPATCH_DAYS
---------------------
                  -11

Note: Outputs of the said SQL statement shown here is taken by using Oracle Database 10g Express Edition

Here is a slide presentation of all aggregate functions.

Check out our 1000+ SQL Exercises with solution and explanation to improve your skills.

Previous: Avg function
Next: Avg with round, group by



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/sql/aggregate-functions/avg-decimal-places-using-cast-within-avg.php