w3resource

Pandas Series: plot.density() function

Series-plot.density() function

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination.

The plot.density() function generates Kernel Density Estimate plot using Gaussian kernels.

Syntax:

Series.plot.density(self, bw_method=None, ind=None, **kwargs)

Parameters:

Name Description Type/Default Value Required / Optional
bw_method The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If None (default), 'scott' is used. See scipy.stats.gaussian_kde for more information. str, scalar or callable Optional
ind Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used. NumPy array or integer Optional
**kwds Additional keyword arguments are documented in pandas.%(this-datatype)s.plot().   Optional

Returns: matplotlib.axes.Axes or numpy.ndarray of them.

Example - Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default):

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 3, 2.6, 3.5, 2.5, 4, 5])
ax = s.plot.kde()

Output:

Pandas Series: plot.density() function

Example - A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 3, 2.6, 3.5, 2.5, 4, 5])
ax = s.plot.kde(bw_method=0.2)

Output:

Pandas Series: plot.density() function

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 3, 2.6, 3.5, 2.5, 4, 5])
ax = s.plot.kde(bw_method=2)

Output:

Pandas Series: plot.density() function

Example - Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 3, 2.6, 3.5, 2.5, 4, 5])
ax = s.plot.kde(ind=[2, 3, 4, 5, 6])

Output:

Pandas Series: plot.density() function

Example - For DataFrame, it works in the same way:

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame({
    'x': [2, 3, 2.6, 3.5, 2.5, 4, 5],
    'y': [4, 3, 4.5, 4, 5, 5.5, 6],
})
ax = df.plot.kde()

Output:

Pandas Series: plot.density() function

Example - A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting:

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame({
    'x': [2, 3, 2.6, 3.5, 2.5, 4, 5],
    'y': [4, 3, 4.5, 4, 5, 5.5, 6],
})
ax = df.plot.kde(bw_method=0.3)

Output:

Pandas Series: plot.density() function

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame({
    'x': [2, 3, 2.6, 3.5, 2.5, 4, 5],
    'y': [4, 3, 4.5, 4, 5, 5.5, 6],
})
ax = df.plot.kde(bw_method=3)

Output:

Pandas Series: plot.density() function

Example - Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF:

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame({
    'x': [2, 3, 2.6, 3.5, 2.5, 4, 5],
    'y': [4, 3, 4.5, 4, 5, 5.5, 6],
})
ax = df.plot.kde(ind=[2, 3, 4, 5, 6, 7])

Output:

Pandas Series: plot.density() function

Previous: Series-plot.box() function
Next: Series-plot.hist() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-plot-density.php