Soccer Database - Subquery: Exercises, Practice, Solution
SQL [33 exercises with solution]
[An editor is available at the bottom of the page to write and execute the scripts. Go to the editor]
Sample Database: soccer
1. From the following table, write a SQL query to find out which teams played the first match of the 2016 Euro Cup. Return match number, country name.
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
..........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
match_no | country_name
----------+--------------
1 | France
1 | Romania
(2 rows)
2. From the following tables, write a SQL query to find the winner of EURO cup 2016. Return country name.
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.......
1229 | NOR | Norway
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
.........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample Output:
team ---------- Portugal (1 row)
3. From the following table, write a SQL query to find the highest audience match. Return match_no, play_stage, goal_score, audience.
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
.........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample Output:
match_no | play_stage | goal_score | audence
----------+------------+------------+---------
48 | Q | 5-2 | 76833
(1 row)
4. From the following tables, write a SQL query to find the match number in which Germany played against Poland. Group the result set on match number. Return match number.
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
.......
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.......
1229 | NOR | Norway
Sample Output:
match_no
----------
18
(1 row)
5. From the following tables, write a SQL query to find the result of the match where Portugal played against Hungary. Return match_no, play_stage, play_date, results, goal_score.
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.......
1229 | NOR | Norway
Sample Output:
match_no | play_stage | play_date | results | goal_score
----------+------------+------------+---------+------------
34 | G | 2016-06-22 | DRAW | 3-3
(1 row)
6. From the following table, write a SQL query to find the players who scored the most goals in each match. Group the result set on match number, country name and player name. Sort the result-set in ascending order by match number. Return match number, country name, player name and number of matches.
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
..........
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
........
1229 | NOR | Norway
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample Output:
match_no | country_name | player_name | count
----------+---------------------+-------------------------+-------
1 | France | Dimitri Payet | 1
1 | France | Olivier Giroud | 1
1 | Romania | Bogdan Stancu | 1
2 | Switzerland | Fabian Schar | 1
.....
7. From the following tables, write a SQL query to find the highest audience match. Return country name of the teams.
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
........
1229 | NOR | Norway
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
..........
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample Output:
country_name -------------- France Iceland (2 rows)
8. From the following tables, write a SQL query to find the player who scored the last goal for Portugal against Hungary. Return player name.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
........
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
...........
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
........
1229 | NOR | Norway
Sample Output:
player_name
--------------------
Cristiano Ronaldo
(1 row)
9. From the following table, write a SQL query to find the second-highest stoppage time in the second half.
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample Output:
max ----- 374 (1 row)
10. From the following table, write a SQL query to find the teams played the match where the second highest stoppage time had been added in the second half of play. Return country name of the teams.
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.........
1229 | NOR | Norway
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample Output:
country_name -------------- Albania France (2 rows)
11. From the following table, write a SQL query to find the teams played the match where second highest stoppage time had been added in second half of play. Return match_no, play_date, stop2_sec.
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
.........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample Output:
match_no | play_date | stop2_sec
----------+------------+-----------
15 | 2016-06-16 | 374
(1 row)
12. From the following tables, write a SQL query to find the team, which was defeated by Portugal in EURO cup 2016 final. Return the country name of the team.
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
........
1229 | NOR | Norway
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample Output:
country_name -------------- France (1 row)
13. From the following table, write a SQL query to find the club, which supplied the most number of players to the 2016-EURO cup. Return club name, number of players.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
........
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample Output:
playing_club | count --------------+------- Juventus | 12 Liverpool | 12 (2 rows)
14. From the following tables, write a SQL query to find the player who scored the first penalty of the tournament. Return player name and Jersey number.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
.......
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample Output:
player_name | jersey_no ----------------+----------- Bogdan Stancu | 19 (1 row)
15. From the following tables, write a SQL query to find the player who scored the first penalty in the tournament. Return player name, Jersey number and country name.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
........
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
player_name | jersey_no | country_name ----------------+-----------+-------------- Bogdan Stancu | 19 | Romania (1 row)
16. From the following tables, write a SQL query to find the goalkeeper for Italy in penalty shootout against Germany in Football EURO cup 2016. Return goalkeeper name.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: penalty_gk
match_no | team_id | player_gk
----------+---------+-----------
37 | 1221 | 160463
37 | 1213 | 160278
45 | 1213 | 160278
45 | 1214 | 160302
47 | 1208 | 160163
47 | 1211 | 160231
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
.......
1229 | NOR | Norway
Sample Output:
player_name
-------------------
Gianluigi Buffon
(1 row)
17. From the following tables, write a SQL query to find the number of goals Germany scored at the tournament.
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
.......
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.......
1229 | NOR | Norway
Sample Output:
count
-------
7
(1 row)
18. From the following table, write a SQL query to find the players who were the goalkeepers of the England team that played in the 2016-EURO. Return player name, jersey number, club name
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
player_name | jersey_no | playing_club -----------------+-----------+-------------- Joe Hart | 1 | Man. City Fraser Forster | 13 | Southampton Tom Heaton | 23 | Burnley (3 rows)
19. From the following table, write a SQL query to find the Liverpool players who were part of England's squad at the 2016 Euro Cup. Return player name, jersey number, and position to play, age.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.......
1229 | NOR | Norway
Sample Output:
player_name | jersey_no | posi_to_play | age
-------------------+-----------+--------------+-----
James Milner | 4 | MF | 30
Adam Lallana | 8 | MF | 28
Nathaniel Clyne | 12 | DF | 25
Jordan Henderson | 14 | MF | 26
Daniel Sturridge | 15 | FD | 26
(5 rows)
20. From the following table, write a SQL query to find the players who scored the last goal in the second semi-final, i.e., the 50th match of the 2016-EURO Cup. Return player name, goal time, goal half, country name.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
.....
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
......
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
......
1229 | NOR | Norway
Sample Output:
player_name | goal_time | goal_half | country_name
--------------------+-----------+-----------+--------------
Antoine Griezmann | 72 | 2 | France
(1 row)
21. From the following table, write a SQL query to find out who was the captain of Portugal's winning EURO cup 2016 team. Return the captain name.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: match_captain
match_no | team_id | player_captain
----------+---------+----------------
1 | 1207 | 160140
1 | 1216 | 160349
2 | 1201 | 160013
2 | 1221 | 160467
3 | 1224 | 160539
3 | 1218 | 160401
4 | 1206 | 160136
4 | 1217 | 160373
5 | 1222 | 160494
......
51 | 1207 | 160140
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
.......
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample Output:
player_name
--------------------
Cristiano Ronaldo
(1 row)
22. From the following tables, write a SQL query to count the number of players played for 'France’ in the final. Return 'Number of players shared fields'.
Sample table: player_in_out
match_no | team_id | player_id | in_out | time_in_out | play_schedule | play_half
----------+---------+-----------+--------+-------------+---------------+-----------
1 | 1207 | 160151 | I | 66 | NT | 2
1 | 1207 | 160160 | O | 66 | NT | 2
1 | 1207 | 160161 | I | 77 | NT | 2
1 | 1207 | 160161 | O | 77 | NT | 2
1 | 1207 | 160157 | I | 2 | ST | 2
1 | 1207 | 160154 | O | 2 | ST | 2
1 | 1216 | 160365 | I | 61 | NT | 2
1 | 1216 | 160366 | O | 61 | NT | 2
.........
51 | 1214 | 160316 | O | 79 | NT | 2
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
..........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
Number of players shared fields
---------------------------------
14
(1 row)
23. From the following table, write a SQL query to find the Germany goalkeeper who did not concede any goals in their group stage matches. Return goalkeeper name, jersey number.
Sample table: player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
.......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
..........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
player_name | jersey_no ---------------+----------- Manuel Neuer | 1 (1 row)
24. From the following tables, write a SQL query to find the runners-up in Football EURO cup 2016. Return country name.
Sample table: match_details
match_no | play_stage | team_id | win_lose | decided_by | goal_score | penalty_score | ass_ref | player_gk
----------+------------+---------+----------+------------+------------+---------------+---------+-----------
1 | G | 1207 | W | N | 2 | | 80016 | 160140
1 | G | 1216 | L | N | 1 | | 80020 | 160348
2 | G | 1201 | L | N | 0 | | 80003 | 160001
2 | G | 1221 | W | N | 1 | | 80023 | 160463
3 | G | 1224 | W | N | 2 | | 80031 | 160532
3 | G | 1218 | L | N | 1 | | 80025 | 160392
4 | G | 1206 | D | N | 1 | | 80008 | 160117
4 | G | 1217 | D | N | 1 | | 80019 | 160369
5 | G | 1222 | L | N | 0 | | 80011 | 160486
..........
51 | F | 1207 | L | N | 0 | | 80007 | 160140
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
country_name -------------- France (1 row)
25. From the following tables, write a SQL query to find the maximum penalty shots taken by the teams. Return country name, maximum penalty shots.
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample table: penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
........
37 | 47 | 1208 | 160166 | Y | 18
Sample Output:
country_name | shots --------------+------- Poland | 9 Italy | 9 Germany | 9 (3 rows)
26. From the following tables, write a SQL query to find the maximum number of penalty shots taken by the players. Return country name, player name, jersey number and number of penalty shots.
Sample table : player_mast
player_id | team_id | jersey_no | player_name | posi_to_play | dt_of_bir | age | playing_club
-----------+---------+-----------+-------------------------+--------------+------------+-----+---------------------
160001 | 1201 | 1 | Etrit Berisha | GK | 1989-03-10 | 27 | Lazio
160008 | 1201 | 2 | Andi Lila | DF | 1986-02-12 | 30 | Giannina
160016 | 1201 | 3 | Ermir Lenjani | MF | 1989-08-05 | 26 | Nantes
160007 | 1201 | 4 | Elseid Hysaj | DF | 1994-02-20 | 22 | Napoli
160013 | 1201 | 5 | Lorik Cana | MF | 1983-07-27 | 32 | Nantes
160010 | 1201 | 6 | Frederic Veseli | DF | 1992-11-20 | 23 | Lugano
160004 | 1201 | 7 | Ansi Agolli | DF | 1982-10-11 | 33 | Qarabag
160012 | 1201 | 8 | Migjen Basha | MF | 1987-01-05 | 29 | Como
160017 | 1201 | 9 | Ledian Memushaj | MF | 1986-12-17 | 29 | Pescara
.......
160548 | 1224 | 23 | Simon Church | FD | 1988-12-10 | 27 | MK Dons
Sample table : penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
........
37 | 47 | 1208 | 160166 | Y | 18
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
.....
1229 | NOR | Norway
Sample Output:
country_name | player_name | jersey_no | shots --------------+-----------------------+-----------+------- Poland | Jakub Blaszczykowski | 16 | 2 Poland | Arkadiusz Milik | 7 | 2 Poland | Robert Lewandowski | 9 | 2 Poland | Kamil Glik | 15 | 2 (4 rows)
27. From the following table, write a SQL query to find the matches with the most penalty shots.
Sample table : penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
.......
37 | 47 | 1208 | 160166 | Y | 18
Sample Output:
match_no | shots
----------+-------
47 | 18
(1 row)
28. From the following table, write a SQL query to determine the match number where the most penalty shots were taken. Return match number, country name.
Sample table: penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
......
37 | 47 | 1208 | 160166 | Y | 18
Sample Output:
match_no | country_name
----------+--------------
47 | Germany
47 | Italy
(2 rows)
29. From the following table, write a SQL query to find the player of ‘Portugal’ who took the seventh kick against ‘Poland’. Return match number, player name and kick number.
Sample table: penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
........
37 | 47 | 1208 | 160166 | Y | 18
Sample table: soccer_country
country_id | country_abbr | country_name
------------+--------------+---------------------
1201 | ALB | Albania
1202 | AUT | Austria
1203 | BEL | Belgium
1204 | CRO | Croatia
1205 | CZE | Czech Republic
1206 | ENG | England
1207 | FRA | France
1208 | GER | Germany
1209 | HUN | Hungary
........
1229 | NOR | Norway
Sample Output:
match_no | player_name | kick_no
----------+-------------+---------
45 | Nani | 7
(1 row)
30. From the following table, write a SQL query to find the stage of the match where penalty kick number 23 was taken. Return match number, play_stage.
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
.........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample table: penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
........
37 | 47 | 1208 | 160166 | Y | 18
Sample Output:
match_no | play_stage
----------+------------
47 | Q
(1 row)
31. From the following table, write a SQL query to find the venues where penalty shoot-out matches were played. Return venue name.
Sample table: soccer_venue
venue_id | venue_name | city_id | aud_capacity
----------+-------------------------+---------+--------------
20001 | Stade de Bordeaux | 10003 | 42115
20002 | Stade Bollaert-Delelis | 10004 | 38223
20003 | Stade Pierre Mauroy | 10005 | 49822
20004 | Stade de Lyon | 10006 | 58585
20005 | Stade VElodrome | 10007 | 64354
20006 | Stade de Nice | 10008 | 35624
20007 | Parc des Princes | 10001 | 47294
20008 | Stade de France | 10002 | 80100
20009 | Stade Geoffroy Guichard | 10009 | 42000
20010 | Stadium de Toulouse | 10010 | 33150
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
.........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample table: penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
.........
37 | 47 | 1208 | 160166 | Y | 18
Sample Output:
venue_name
-------------------------
Stade VElodrome
Stade de Bordeaux
Stade Geoffroy Guichard
(3 rows)
32. From the following table, write a SQL query to find out when the penalty shootout matches were played. Return playing date.
Sample table: soccer_venue
venue_id | venue_name | city_id | aud_capacity
----------+-------------------------+---------+--------------
20001 | Stade de Bordeaux | 10003 | 42115
20002 | Stade Bollaert-Delelis | 10004 | 38223
20003 | Stade Pierre Mauroy | 10005 | 49822
20004 | Stade de Lyon | 10006 | 58585
20005 | Stade VElodrome | 10007 | 64354
20006 | Stade de Nice | 10008 | 35624
20007 | Parc des Princes | 10001 | 47294
20008 | Stade de France | 10002 | 80100
20009 | Stade Geoffroy Guichard | 10009 | 42000
20010 | Stadium de Toulouse | 10010 | 33150
Sample table: match_mast
match_no | play_stage | play_date | results | decided_by | goal_score | venue_id | referee_id | audence | plr_of_match | stop1_sec | stop2_sec
----------+------------+------------+---------+------------+------------+----------+------------+---------+--------------+-----------+-----------
1 | G | 2016-06-11 | WIN | N | 2-1 | 20008 | 70007 | 75113 | 160154 | 131 | 242
2 | G | 2016-06-11 | WIN | N | 0-1 | 20002 | 70012 | 33805 | 160476 | 61 | 182
3 | G | 2016-06-11 | WIN | N | 2-1 | 20001 | 70017 | 37831 | 160540 | 64 | 268
4 | G | 2016-06-12 | DRAW | N | 1-1 | 20005 | 70011 | 62343 | 160128 | 0 | 185
5 | G | 2016-06-12 | WIN | N | 0-1 | 20007 | 70006 | 43842 | 160084 | 125 | 325
6 | G | 2016-06-12 | WIN | N | 1-0 | 20006 | 70014 | 33742 | 160291 | 2 | 246
7 | G | 2016-06-13 | WIN | N | 2-0 | 20003 | 70002 | 43035 | 160176 | 89 | 188
8 | G | 2016-06-13 | WIN | N | 1-0 | 20010 | 70009 | 29400 | 160429 | 360 | 182
9 | G | 2016-06-13 | DRAW | N | 1-1 | 20008 | 70010 | 73419 | 160335 | 67 | 194
.........
51 | F | 2016-07-11 | WIN | N | 1-0 | 20008 | 70005 | 75868 | 160307 | 161 | 181
Sample table: penalty_shootout
kick_id | match_no | team_id | player_id | score_goal | kick_no
---------+----------+---------+-----------+------------+---------
1 | 37 | 1221 | 160467 | Y | 1
2 | 37 | 1213 | 160297 | Y | 2
3 | 37 | 1221 | 160477 | N | 3
4 | 37 | 1213 | 160298 | Y | 4
5 | 37 | 1221 | 160476 | Y | 5
6 | 37 | 1213 | 160281 | Y | 6
7 | 37 | 1221 | 160470 | Y | 7
8 | 37 | 1213 | 160287 | Y | 8
9 | 37 | 1221 | 160469 | Y | 9
.........
37 | 47 | 1208 | 160166 | Y | 18
Sample Output:
play_date ------------ 2016-07-03 2016-07-01 2016-06-25 (3 rows)
33. From the following table, write a SQL query to find the fastest goal at the EURO cup 2016, after 5 minutes. Return 'Quickest goal after 5 minutes'.
Sample table: goal_details
goal_id | match_no | player_id | team_id | goal_time | goal_type | play_stage | goal_schedule | goal_half
---------+----------+-----------+---------+-----------+-----------+------------+---------------+-----------
1 | 1 | 160159 | 1207 | 57 | N | G | NT | 2
2 | 1 | 160368 | 1216 | 65 | P | G | NT | 2
3 | 1 | 160154 | 1207 | 89 | N | G | NT | 2
4 | 2 | 160470 | 1221 | 5 | N | G | NT | 1
5 | 3 | 160547 | 1224 | 10 | N | G | NT | 1
6 | 3 | 160403 | 1218 | 61 | N | G | NT | 2
7 | 3 | 160550 | 1224 | 81 | N | G | NT | 2
8 | 4 | 160128 | 1206 | 73 | N | G | NT | 2
9 | 4 | 160373 | 1217 | 93 | N | G | ST | 2
.......
108 | 51 | 160319 | 1214 | 109 | N | F | ET | 2
Sample Output:
Most quickest goal after 5 minutes
------------------------------------
6
(1 row)
More to come .......
Practice Online
Query visualizations are generated using Postgres Explain Visualizer (pev)
Do not submit any solution of the above exercises at here, if you want to contribute go to the appropriate exercise page.
