NumPy: numpy.full() function
numpy.full() function
The numpy.full() function is used to create a new array of the specified shape and type, filled with a specified value.
Syntax:
numpy.full(shape, fill_value, dtype=None, order='C')

Parameters:
Name | Description | Required / Optional |
---|---|---|
shape | Shape of the new array, e.g., (2, 3) or 2. | Required |
fill_value | Fill value. | Required |
dtype | The desired data-type for the array The default, None, means np.array(fill_value).dtype. | optional |
order | Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory | optional |
Return value:
[ndarray] Array of fill_value with the given shape, dtype, and order.
Example: Create arrays filled with a constant value using numpy.full()
>>> import numpy as np
>>> np.full((3, 3), np.inf)
array([[ inf, inf, inf],
[ inf, inf, inf],
[ inf, inf, inf]])
>>> np.full((3, 3), 10.1)
array([[ 10.1, 10.1, 10.1],
[ 10.1, 10.1, 10.1],
[ 10.1, 10.1, 10.1]])
The above code creates arrays filled with a constant value using the numpy.full() function. In the first example, np.full((3, 3), np.inf) creates a 3x3 numpy array filled with np.inf (infinity). np.inf is a special floating-point value that represents infinity, and is often used in calculations involving limits and asymptotes.
In the second example, np.full((3, 3), 10.1) creates a 3x3 numpy array filled with the value 10.1. Here, the dtype parameter is omitted, so numpy infers the data type of the array from the given value.
Pictorial Presentation:

Example: Create an array filled with a single value using np.full()
>>> import numpy as np
>>> np.full((3,3), 55, dtype=int)
array([[55, 55, 55],
[55, 55, 55],
[55, 55, 55]])
In the above code, np.full((3,3), 55, dtype=int) creates a 3x3 numpy array filled with the integer value 55. The dtype parameter is explicitly set to int, so the resulting array has integer data type.
Pictorial Presentation:

Python - NumPy Code Editor:
Previous: zeros_like()
Next: full_like()
- Weekly Trends
- Python Interview Questions and Answers: Comprehensive Guide
- Scala Exercises, Practice, Solution
- Kotlin Exercises practice with solution
- MongoDB Exercises, Practice, Solution
- SQL Exercises, Practice, Solution - JOINS
- Java Basic Programming Exercises
- SQL Subqueries
- Adventureworks Database Exercises
- C# Sharp Basic Exercises
- SQL COUNT() with distinct
- JavaScript String Exercises
- JavaScript HTML Form Validation
- Java Collection Exercises
- SQL COUNT() function
- SQL Inner Join